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Abstract—The Onboard Autonomous Science Investigation 
System (OASIS) is a technology for increasing science 
return during rover traverses by prioritizing data onboard, 
and identifying and reacting to unanticipated science 
opportunities. 
 
Rovers of the future will have the capacity to collect more 
data than can be downlinked back to Earth.  OASIS can 
increase mission science return by carefully selecting the 
data with the highest science interest for downlink. 
 
These rovers may also be required to traverse long distances 
with little to no interaction with the science team on Earth.  
OASIS can act as a geologist’s assistant and can 
autonomously direct the rover to take additional 
measurements of “interesting” rocks.  The importance of 
characterizing the terrain along these traverses, a study that 
is now becoming known as traverse science, increases with 
the distances the rover must travel. 
 
This paper provides a brief overview of the entire OASIS 
system and how it analyzes one type of data - grayscale 
images taken by the rover for engineering and hazard 
avoidance purposes.  Although the OASIS system can apply 
the same type of analysis to different data types, such as 
color images, hyperspectral images or point spectrometer 
data, we will only focus on grayscale images here.   
 
The paper also describes the latest advances in two key 
aspects of the system: image prioritization and the science 
alert.  In image prioritization, we combine the results from 
three distinct prioritization methods to arrive at an overall 
downlink ranking of the images collected during a traverse.  
 
The science alert is a capability that enables the rover to 
identify and react to a pre-specified, and scientifically 
significant, signature.  Once this signature has been detected 
via the onboard science analysis component, the planning 
and scheduling module updates the rover command 
sequence to stop the traverse and signal Earth of the find.  If 

there is sufficient time and onboard resources before the 
next downlink opportunity, additional data samples of the 
target may be autonomously collected. 
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 1. INTRODUCTION 
Rovers offer scientists the ability to move around a 
planetary surface and explore different areas of interest.  
The farther the rover can travel, the greater the opportunity 
exists for increased scientific discovery. In order to reach 
respectable travel distances, engineers must be able to direct 
the rover forward in a much more autonomous fashion – 
without constant “stop, look and explore” directives from 
the ground based science community.   
 
This “stop, look and explore” phenomenon (resulting from 
the long two-way communication travel time) was 
witnessed in the Mars Pathfinder mission during the 
coordination of the small Sojourner rover.  Sojourner 
traveled approximately 100 meters during its 90-day 
lifetime [1], but traversed a maximum radial distance of 
only 12 meters from the lander according to Matt 
Golombek, Project Scientist for the Mars Pathfinder 
Mission.  Arguably one of the most successful and historic 
space exploration missions to date, one cannot help but 
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ponder what other discoveries lay just beyond the 12-meter 
mark (see Figure 1). 
 
One possibility of extending the rover’s mobility exists in a 

mission concept of focusing the scientific investigation on 
multiple science sites that are located several rover traverse 
days away from each other.  In this scenario, scientists 
would have control over the operations at each of the 
science sites, and engineers would be given free reign to 
drive the rover, without interruption, to each of the science 
sites.   
 
This scenario allows for a deep and concentrated 
exploration of each science site, but this capability does not 
come without a price.  In order to expeditiously drive the 
rover to each of the far flung sites, scientists can no longer 
perform detailed examinations of the long traverses between 
each science site.  There is, however, a technology under 
development to autonomously study the terrain during long 
rover traverses.  The Onboard Autonomous Science 
Investigation System (OASIS) [2,3], a system that is the 
result of research started at JPL in 1998, was designed to 
address this type of geological research application.  The 
study of terrain during a traverse is now becoming known 
as traverse science. 
 
OASIS maximizes the geological data that rovers can 
collect and subsequently downlink in two key ways: by 
prioritizing and summarizing all of the data so that the most 
important data is sent first, and by autonomously searching 
for pre-specified targets that will trigger additional, 
opportunistic science measurements. 
 
                                                           
 

Prioritization Offsets Downlink Constraints  
 
Due to ongoing technology advancements, the data capture 
rate of spacecraft instruments is increasing at a rapid pace.  
Soon spacecraft will be able to collect more data than can 
be received by NASA’s communication-relay antenna 
infrastructure, the Deep Space Network (DSN).  Not only 
must the DSN maintain the communications from all the 
current spacecraft in the Solar System, including spacecraft 
as old as the 26-year-old Voyager spacecraft, but the DSN 
must also manage the many future missions planned. 
 
Future rovers, therefore, will soon have the capacity to 
collect more data than can be downlinked back to Earth.   
Restricting the rover’s onboard data collection to 
accommodate the limited DSN bandwidth of the mission 
may be the current modus operandi, but it may not be the 
best option for optimizing the use of the precious bandwidth 
resource. 
 
OASIS was designed to provide scientists and mission 
operations personnel with a method of maximizing the 
science data returned per transmission cycle.  With OASIS 
onboard, the rover is now instructed to collect as much data 
as it can – regardless of how much of the data the rover can 
actually downlink back to Earth.  OASIS continually 
reviews and prioritizes the data as it is collected.  At the 
time the data must be sent back to Earth, the most 
interesting data in the prioritization queue is sent first.  As 
the rover has more data than can be downlinked, OASIS 
provides the scientists with the most interesting data 
collected that day. 
 
We have previously presented three data-prioritization 
techniques, which look for target signatures, novel objects, 
and objects that are highly representative of the terrain.  
This paper discusses how the results of these techniques can 
be efficiently combined into one unified prioritization.  
 
Prioritization of the data gathered during the traverse is 
important, but so is a short, tabular summary of the entire 
traverse.  OASIS provides a comprehensive overview of all 
of the rocks that it found during the traverse.  This type of 
information is important to scientists interested in rock type 
distribution and detection of geologic boundaries.  Another 
advantage of this summary table is that it takes up a very 
small portion of the available bandwidth, and does not 
significantly impact the downlink queue.  As the 
summarization component of OASIS was developed 
previously, it will not be discussed further. 
 
Opportunistic Science – the Science Alert 
 
Besides the obvious advantages of data prioritization and 
summarization, OASIS has made another contribution to 
traverse science and it is the science alert. 
 

Figure 1 The rover Sojourner's path throughout its
1997 Mars mission. 
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The science alert is an algorithm designed to find key 
targets that have been pre-specified by the scientists as 
important.  As data from the rover are fed to the OASIS 
system, the science alert analyzes the data and looks for a 
rock that a scientist would want another measurement of, if 
he/she were actually there on Mars.  The characteristics of 
this rock are programmed into the OASIS system based on 
the specifications provided by the science team. 
 
If the science alert actually finds a rock that meets these 
characteristics, it triggers the planning and scheduling 
system to either stop and call home (an extremely important 
rock has been found) or schedules another science 
measurement.  Additional science measurements may 
include a color image of the rock, a spectrometer 
measurement, or a contact measurement. 
 
This paper addresses the planning and scheduling aspects of 
the science alert.  However, before discussing the details of 
the development work completed on both the science alert 
and the unified prioritization technique, a brief overview of 
OASIS is presented. 
 
 2. OASIS SYSTEM OVERVIEW 
To assess and subsequently prioritize the scientific value of 
a set of collected grayscale images, we must first extract the 
information found within the images.  A geologist in the 
field gets information about a site by identifying geologic 
features including the albedo, texture, shape, size, color, and 
arrangement of rocks, and features of the topography such 
as layers in a cliff face.  The geologist analyzes and assesses 
this data, and then takes some action based on the analysis, 
such as taking a sample or taking some additional 
measurement of an interesting rock. 
 
In order for scientists to allow an autonomous system to 

help investigate the traversed region, the system must be 
able to perform, albeit in a very simple way, these same 
types of functions.  This system thus acts as a geologist’s 
assistant who helps point out rocks of interest to the 
geologist. 
 
A schematic of the OASIS system is shown in Figure 2.  
The color-coded boxes in the figure reveal the three major 
components that comprise OASIS: 
 

• Extract Features from Images: Enables extraction 
of features of interest from collected images of the 
surrounding terrain. This module both locates 
rocks in the images and extracts rock properties 
(features) including shape, texture and albedo.   

• Analyze and Prioritize Data: Uses the extracted 
features to assess the scientific value of the 
planetary scene and to generate new science 
objectives that will further contribute to this 
assessment. This module consists of three separate 
prioritization algorithms that analyze the collected 
data and prioritize the rocks.  The results from 
these three algorithms are then fed into a unified 
prioritization algorithm that provides two downlink 
products: a prioritized list of images for downlink 
and a table that summarizes all of the rocks found 
on the traverse. A new set of observation goals is 
also generated to gather further data on rocks that 
either conform to the pre-set specifications by the 
science team, or are so novel in comparison to the 
other rocks, that another data measurement may be 
required. 

• Plan and Schedule New Command Sequence:  
Enables dynamic modification of the current rover 
command sequence (or plan) to accommodate new 
science requests from the data analysis and 

Figure 2  Overview of Onboard Autonomous Science Investigation System (OASIS). 
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prioritization module.  A continuous planning 
approach is used to iteratively adjust the plan as 
new goals occur, while ensuring that resource and 
other operation constraints are met.  

3. FEATURE EXTRACTION 

As the geologist’s assistant, OASIS must be able to find and 
evaluate the rocks on the surface of Mars.   

The first step in the process is to take grayscale image data 
and a stereo range map and find, and then closely outline, 
the rocks within the image.  JPL has had some success [4] 
in this area, but as this method required substantial 
parameter adjustment for each new data set, this was 
unacceptable for an onboard application.  This task is non-
trivial (see Figure 3) and the new rock-finding algorithm is 
still under development. 

 
Figure 3 Grayscale image with rocks outlined (in 
red) by the newer, more robust, version of the rock-
finder.  Note that the rock-finding algorithm shows 
the shadows as part of the rocks and that the white 
rock has not been outlined in its entirety.  OASIS is 
already funded to address these issues. 

 
After OASIS has found the rocks, OASIS extracts the 
features (or properties) of each rock from the image data. 
 The rock features that are currently extracted include 
albedo, visual texture and shape.  Our scientist 
collaborators helped us select these rock properties so 
that what OASIS measures will mirror the properties that 
an expert would use to evaluate the scientific merit of an 
image’s contents.   
 
We measure albedo, an indicator of the reflectance 
properties of a surface, by computing the average gray-
scale value of the pixels that comprise the image of the 
rock.  The reflectance properties of a rock provide 
information about its mineralogical composition.  
 
The second rock property extracted is visual texture.  Visual 
texture can provide valuable clues to both the mineral 
composition and geological history of a rock. Visual texture 
can be described by gray-scale intensity variations at 
different orientations and spatial frequencies within the 

image.  We measure texture using a bank of Gabor filters 
[5,6].  Gabor filters are scale and orientation specific, thus 
the results of convolving an image with these filters can be 
successfully used to discriminate between different textures.  
 
Another important and geologically useful feature of rocks 
is their inherent shape.  For example, a rock that is highly 
rounded may have undergone fluvial processing and 
traveled far from its source.  Conversely, a rock that is 
highly angular is likely to be close to its source and to have 
undergone minimal secondary processing.  We begin by 
fitting an ellipse to the boundary points of the identified 
rock in the image [7].  Our first shape measure is the 
eccentricity of this ellipse.  Our second measure is the error 
between the boundary points and the ellipse.   The third and 
final measure is angularity, which is measured as the 
standard deviation of the angle of the edge at each boundary 
point.  
 

4. DATA PRIORITIZATION 

Images with interesting features should be ranked higher 
than images without distinctive features. We have 
developed three different prioritization methods that use the 
extracted rock features to rank the rocks in terms of 
scientific importance.  These three algorithms capture 
several aspects of science investigation including 
identification of pre-specified targets, discovery of novel 
targets and gaining a representative understanding of the 
data.   
 
The first technique recognizes pre-specified target 
signatures that have been identified by the science team as 
data of high interest. This prioritization method enables 
scientists to efficiently and easily stipulate the value and 
importance to assign to each feature.  Rocks are then 
prioritized as a function of the distance of their extracted 
feature vector from the specified weighted feature vector.  
Scientists are given two ways to set the target signatures 
that will determine how the rocks are ranked.  In the first 
method, the scientist can directly set the importance of 
specific feature values.  For example, the scientist may 
chose to prioritize rocks based on two aspects of their 
shape, such as eccentricity and ellipse fit. The second 
manner in which scientists can specify a target signature is 
by selecting a rock with interesting properties from the set 
of already identified rocks.  Rocks that resemble this 
particular rock in the selected properties are given a high 
priority.  
 
The second technique, novelty detection, identifies unusual 
signatures that do not conform to the statistical norm for the 
region.  We have developed three methods for detecting and 
prioritizing novel rocks, representing the three dominant 
flavors of machine learning approaches to novelty 
detection:  

• distance-based,  
• probability-based (i.e. "generative"), 
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• and discriminative.   
 
The first novelty detection method is a distance-based k-
means clustering approach.  Initially, all available rock data 
is clustered into a specified number (k) of classes.  The 
novelty of any rock is then the distance of the rock feature 
vector to the nearest center of any of the k clusters.  The 
greater the rock’s distance is to the nearest center, the 
higher the novelty ranking assigned to the rock.   
 
The second technique is a probability-based Gaussian 
mixture model, which attempts to model the probability 
density over the feature space. In this approach, the novelty 
of a rock is inversely proportional to the resulting 
probability of that rock being generated by the model 
learned on previous rock data. 
 
The final method is a discrimination-based kernel one-class 
classifier approach.  Here we treat all previous rock data as 
the "positive class" and learn the discriminant boundary that 
encloses all that data in the feature space.  We essentially 
consider the previous rock data as a cloud scatter in some 
D-dimensional space, where D is the number of features. 
The algorithm learns the boundary of that cloud, so that 
future rock data that falls farther outside the cloud boundary 
is considered more novel.  
 
The last prioritization algorithm, known as representative 
sampling, prioritizes data for downlink by ensuring that 
representative rocks of the traversed region are returned.  
One of the objectives for rover traverse science is to gain an 
understanding of the region being traversed.  To meet this 
objective, the downlink back to Earth should include 
information on rocks that are typical for a region, and not 
just information on interesting and unusual rocks.  A region 
is likely populated by several types of rocks with each rock 
type having a different abundance.   If uniform sampling is 
employed for downlink image selection, as opposed to our 
autonomous onboard selection process, the downlinked set 
will be biased towards the dominant class of rock present.  
This situation may result in smaller classes not being 
represented at all in the downlinked data.    
 
To provide an understanding of the typical characteristics of 
a region, rocks are first clustered into groups with similar 
properties.  The data is then prioritized to ensure that 
representative rocks from each class are sampled.  The 
rocks are clustered into groups based on the features 
extracted from the image data for each rock. To determine 
the classes, the property values are concatenated together to 
form a feature vector, and a weight is assigned to the 
importance of each property.  Different weight assignments 
can be used as a function of the particular properties that are 
of interest.  For example, albedo and texture are typically 
used to distinguish types of rocks, but rock size may be 
used if sorting is of interest.  Unsupervised clustering is 
then used to separate the feature vectors into similar classes. 
 We currently employ k-means due to its relatively low 

computational requirements, although any unsupervised 
method could be used.  For each class of rocks, we find the 
most representative rock in the class, i.e., the single rock in 
any image that is closest to the mean of the set.  We give a 
high priority to the image containing this rock.  The optimal 
number of classes can be determined using cross-validation 
techniques [8].  
 
The results from all three prioritization techniques must 
now be merged into one final, ranked list of images for 
downlink. This is accomplished by the unified prioritization 
algorithm, which has been developed this year and will be 
discussed in detail in the next section. 
 
 5. UNIFIED PRIORITIZATION ALGORITHM 

Three algorithms for prioritizing data based on distinct 
criteria of science investigation were described. The 
prioritization information from across these disparate 
criteria must be combined to determine a downlink priority 
ranking for the overall data set. Here we describe how we 
combine the information from the three prioritizations to 
produce a unified prioritization. Our method accounts for 
the rankings for a particular criteria as well as the relative 
weighting of each criteria.  
 
The three algorithms represent methods for evaluating data 
based on three classes of criteria.  For each criterion the data 
are sorted by how closely they align with the given criteria. 
 For example, in the case of target signature this is the 
distance of the feature vector to the target feature. Thus, for 
our three criteria, each data has three fitness scores 
associated with it indicating its fitness for each of the 
distinct criteria.   The relationship of these values provides 
more than just ranking information, but also a measure of 
similarity or significance; however comparisons cannot be 
made between scores measured based on different criteria, 
such as novelty vs. target signature. While a combined 
prioritaztion could be as simple as determining the ranking 
based on the mean rank of the three algorithms for each data 
point, our method also consider the fitness scores for the 
data.   
 
Since fitness scores are not on the same scales across the 
algorithms, we normalize the fitness values associated with 
each criterion for all of the data.  Further, the ranking or 
value does not correspond to a linear weighting. Generally, 
there will be a few examples with high scores and these are 
the most important. The high scores will fall off in an 
exponential manner to a plateau where the majority of 
typical examples reside. These examples are not bad, per se, 
but are not particularly interesting. Following this plateau 
will be a smooth drop off to the extremely bad examples 
which score near zero. The most important object may be 
significantly more important than the second most important 
and objects in the lower half may be of virtually no value. 
We have developed a method with an adjustable non-linear 
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normalization function that implements this. With the 
adjusted list, the information can then be compared. 
 
Using the normalized fitness scores, the simplest method for 
prioritizing the data is to rank based on the norm of the 
fitness vector that has a component for each of the criteria.  
This method will ensure that data with overall high fitness 
across the criteria will be given a high priority.  It is 
possible, however, that a number of data will fit better 
single criterion than any data to the other criteria. This can 
result in a high priority data set that is biased towards this 
single criterion and does not contain the best fitting data to 
other criteria.  To ensure that data with high priority in each 
of the criteria are considered, a procedure for prioritizing 
that also considers the diversity of fitness vectors, i.e. how 
much of the fitness space is covered can be used.  Our 
unified prioritization algorithm uses a combination of these 
two to lean towards data with strong fitness vectors while 
ensuring that the full criteria set is represented.     
 
 6. SCIENCE ALERT 
Prioritization can be used for more than just data downlink 
decisions.  It can also be used to initiate opportunistic 
science activities, or a “stop and call home” feature, if an 
extraordinary rock has been found.  
 
Targets of high science value can be identified for 
additional instrument measurements. Prioritization that calls 
for opportunistic science is a wasted capability without a 
method of re-sequencing the rover to obtain the additional 
scientific observations requested. This ability for real-time 
opportunistic science requires integrating the prioritization 
module with the onboard planning and scheduling system. 
 
The capability to identify and react to science events that 
were not initially scheduled is referred to as a science alert.  
A science alert involves identification of a science 
opportunity through data analysis and the modification of 
the rover activities to react to the opportunity through a 
planning and scheduling module.  There is a spectrum of 
possible reactions to detection of a science opportunity.  In 
this work we describe two of the reactions that have been 
implemented – the stop-and-call-home science alert and a 
request to take an additional science measurement.  
 
As a rover is moving across a region, it is possible that 
unanticipated scientifically interesting targets may be 
encountered.  The OASIS system identifies such targets 
based on gathered data.  Scientists have designated that 
certain features or rocks with specific properties are 
extremely important.  If such a rock is identified it is a 
valuable discovery, however it is imperative that false 
alarms be minimized.  OASIS uses a model that considers 
how likely it is that the measured signal truly represents 
                                                           
  

detection of the target signal based on the similarity of  the 
two signals, as well as estimated measurement noise.  This 
information is then combined with an importance rating for 
the target to identify signals that merit stopping further 
rover travel until a communication opportunity, i.e. stop and 
call home.   
 
A second form of reaction is to request that additional data 
be taken on a target that appears to be of interest.  In 
OASIS, this reaction may occur as a result of a target that is 
particularly unusual or novel.  In this case, the data analysis 
submits a request to the OASIS planner to add a new 
activity to the rover’s schedule.  The new request may be 
for a new image or spectrometer read.  Once the data 
analysis software has identified a set of new science targets, 
these targets are passed to onboard planning and scheduling 
software that can dynamically modify the current rover plan 
in order to collect the new science data.  
 
This component takes as input the new set of science 
requests, the current rover command sequence (or plan), 
and a model of rover operations and constraints.  It then 
evaluates what new science tasks could be added to the 
current plan while ensuring other critical activities are 
preserved and no operation or resource constraints are 
violated. 
 
Planning and scheduling capabilities are provided in OASIS 
by the Continuous Activity Scheduling, Planning and Re-
Planning (CASPER) system [9,10]. CASPER employs a 
continuous planning technique where the planner 
continually evaluates the current plan and modifies it when 
necessary based on new goal, state and resource 
information.  Rather than consider planning a batch process, 
where planning is performed once for a certain time period 
and set of goals, the planner has a current goal set, a current 
rover state, and state projections into the future for that 
plan.  Thus when a science alert request is received the plan 
is incrementally updated to accommodate, if possible, the 
new goal.  The planner is responsible for maintaining a plan 
that will ensure the rover has sufficient resources to 
maintain its health and complete critical goals.  After 
incrementally adjusting the plan in response to current 
resource levels, new goals and original goals, the rover 
activity sequence is updated enabling the rover to execute 
the new goals. 
 
Since science alerts may involve several different levels of 
reaction, OASIS has been designed to support a spectrum of 
reactions. The most basic reaction is to adjust the rover plan 
so that the flagged data is immediately sent back to Earth 
for further analysis and the rover holds at the current 
position, delaying other non-critical tasks.  This and the 
collection of additional data at a site have both been 
implemented.  Future reactions include having the rover 
alter its path to get closer to objects of interest before taking 
additional measurements and/or scheduling a close contact 
measurement (such as with a microscopic imager). These 



 7

operations would provide new data that could not be 
obtained through image analysis alone. The level of reaction 
allowed during mission operations will be determined by 
the constraints and goals of the rover mission and may 
likely vary over the course of a mission. 
 
 7. CONCLUSIONS AND FUTURE WORK 
Onboard, autonomous, science analysis systems are 
currently in development and can be a useful tool in 
maximizing the science return from a mission [11, 2].  
 
As rovers are required to travel longer distances between 
science sites, the importance of traverse science increases. 
In order to allow the engineering team the freedom to 
rapidly move the rover from site to site, and still gain some 
science information from the traverse, a certain level of 
autonomy in the gathering of data will be required.  OASIS 
is a system that is uniquely suited to this pursuit of traverse 
science. 
 
Two important new capabilities have been added to the 
assist the scientist in extracting useful information from the 
many images taken during a long rover traverse: a unified 
prioritization algorithm that can output a prioritized list of 
images for downlink, and a science alert that can identify 
science opportunities and direct the rover to collect 
additional data. 
 
Future Work 

In future work, both the data analysis methods and the 
planning and scheduling capability of OASIS will be 
expanded.   Extensive testing and validation are required in 
the near term as well.  Perhaps the most exciting ground test 
validation will occur in early 2004 when OASIS will be 
given the opportunity to analyze MER images. 
 
Currently, OASIS only extracts texture, albedo and shape 
features from the rocks that it finds.  With the addition of 
range data and coordinate data, OASIS will also be able to 
provide rock size (and thus rock size distribution for all of 
the rocks that it finds) and rock location in the summary 
table that it downlinks at the end of the day.  In the 
upcoming year, OASIS will also be able to extract color 
information from color images. 
 
Further image analysis including estimation of soil and 
atmospheric properties are planned.  In addition, integration 
of data from other instruments, such as a point 
spectrometer, can provide valuable information to the 
onboard system.   
 
In the area of planning and scheduling an emphasis will be 
on broadening the range of possible reactions to new 
science opportunities.  In the near term this will include 
modification of the initial rover path to acquire higher 
quality data on a target of interest. 
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